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Abstract

We study the spread of susceptible-infected-recovered (SIR) infectious diseases
where an individual’s infectiousness and probability of recovery depend on his/her
“age” of infection. We focus first on early outbreak stages when stochastic ef-
fects dominate and show that epidemics tend to happen faster than determin-
istic calculations predict. If an outbreak is sufficiently large, stochastic effects
are negligible and we modify the standard ordinary differential equation (ODE)
model to accommodate age-of-infection effects. We avoid the use of partial dif-
ferential equations which typically appear in related models. We introduce a
“memoryless” ODE system which approximates the true solutions. Finally, we
analyze the transition from the stochastic to the deterministic phase.

1. Introduction

Despite many medical advances in recent history, infectious diseases continue
to impact public health. The recent SARS epidemic, the ongoing pandemic of
novel H1N1 (swine) influenza, and the simmering threat of H5N1 avian influenza
or other diseases call attention to the need to prepare for a quickly-spreading
pandemic. Such a pandemic could have typical infectious period measured in
days or weeks, spread worldwide, and grow quickly. In the face of such an
emerging disease, there is little time to develop and implement interventions.

The ability to predict the timing and maximum patient load imposed by
an epidemic is essential to intervention design. Overestimating the preparation
time available or underestimating the peak may result in well-designed measures
which are implemented too late or are too small.

The ability of an infectious disease to spread depends strongly on the pro-
portion of the population that is susceptible S/N . We will find that the details
of the spread are more sensitive to changes in N/S than changes in S/N (as S
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Figure 1: The course of an epidemic with vertical logscale (left). The cumulative age-of-
infection distribution

R τ
0 i(t, τ ′) dτ ′ at different times (center and right).

decreases, a small change in S/N may correspond to a large change in N/S),
and so we couch most of our discussion in terms of changes in N/S.

Figure 1 shows the course of an epidemic of an infectious disease whose
characteristics are discussed later (§3.2.2 with c = 0.9). At very early times the
disease spreads as a branching process and stochastic effects are important. As
the outbreak grows, the spread continues as a branching process, but stochastic
effects lose importance. However, the epidemic timing always feels the initial
stochastic impact.

We also consider the infection-age distribution i(t, τ), the number of people
infected at time t who have been infected for τ units of time. We plot the
cumulative distribution in figure 1 at small t (center) and larger t (right). At
small t the distributions are noisy, and converge to a steady-state distribution
as t increases. As spread continues, N/S begins to change perceptibly and
the steady-state adjusts adiabatically if N/S changes slowly enough. If N/S
does not change slowly, the system cannot adjust to the changing equilibrium.
During the growing phase of the epidemic, the infected individuals are weighted
towards more recent infections, while during the declining phase the infected
individuals have disproportionately older infections.

We focus on several stages in this paper: the early stochastic phase, the later
deterministic phase, and the transition phase between these two. If S is initially
small, then N/S can change significantly during the stochastic phase. We do
not address this case.

Typically disease outbreaks are either subcritical (meaning R0 < 1) for
which epidemics have zero probability because an average infected person in-
fects fewer than one individual, or supercritical (meaning R0 > 1) for which
epidemics are possible. We consider only supercritical outbreaks. Early in an
outbreak’s spread, growth is dominated by stochastic effects, and it may die
out stochastically. If it persists, it may grow faster or slower than “average”.
As long as N/S does not change significantly, the spread can be modeled using
Crump-Mode-Jagers (CMJ) processes [6, 7, 12, 10]. A subcritical CMJ process
dies out, while a supercritical CMJ process either dies out or converges to Ceφt

where C is a random value and φ depends on the process.
If a supercritical outbreak becomes sufficiently large the spread is effectively

deterministic. The usual equations for this phase are the susceptible-infected-
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recovered (SIR) equations

Ṡ = −βIS/N (1)

İ = βIS/N − γI (2)

Ṙ = γI (3)

These equations assume that infected people cause infections at rate β and re-
cover at rate γ, giving an exponentially distributed infection duration. The
process is “memoryless”. In contrast, for real diseases the “age” of an individ-
ual’s infection affects his/her infectiousness and probability of recovering.

Ignoring “age-of-infection” effects loses important details. During the growth
of an epidemic the infections are biased towards young infection ages. If young
infections are more (or less) infectious, the SIR equations under- (or over-)
estimate the growth rate. Similar observations hold during decay.

Several approaches have been developed to study age-of-infection models.
Some explicitly track the history of the epidemic [4, 11, 3, 2, 14, 5, 20]. Others
maintain the memoryless feature of equations (1)–(3) by introducing a chain of
infected compartments I1, . . . , In in order to approximate the infectious period
distribution [1, 22, 17, 9, 15, 16]. These chains of compartments usually do
not have biological meaning, but instead are a simplifying “trick”. Typically
these assume constant β and that each of n infected classes recovers at rate γn,
resulting in gamma-distributed infectious periods.

In this paper we investigate the growth of an outbreak from a single infection
to a full-scale epidemic, without the restrictive assumptions underlying (1)–(3).
In §2, we show how to model the early stochastic phase and give comparison
with deterministic predictions. In §3 we show how to find deterministic equa-
tions governing the epidemic’s growth. We take a different approach from most
previous studies and arrive at a system similar to the standard equations (1)–(3)
rather than a partial differential equation. If the change in N/S is not large
during a typical infectious period, we can approximate the infectious popula-
tion as being in equilibrium given N/S and arrive at a memoryless system that
captures the dynamics well. In §4 we examine what it means for the outbreak
to be large enough to be effectively deterministic.

2. Stochastic Phase

We assume that the disease spreads from individual to individual in such a
way that the ability of individual u to infect a susceptible individual depends
only on how long u has been infected and whether or not u has recovered. We let
P (τ) be the probability u is still infected τ units of time after becoming infected.
If u is still infected, the rate u causes new infections is β(τ)S/N . This enforces
a possibly unrealistic assumption that infectiousness is independent of infection
duration. It would be straightforward to modify the model to incorporate this
effect, but we do not do it here.

We have P (0) = 1 and — assuming no-one remains infectious forever —
P (∞) = 0. We assume P is differentiable. The probability of recovering in a
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Figure 2: The probability of having 0, 5, or 20 people infected as functions of time beginning
with a single index case: comparison of theory (dashed) and 50 000 simulations.

short interval (τ, τ + ∆τ) is −P ′(τ)∆τ + O(∆τ2), and so as ∆τ → 0, we may
assume the probability approaches −P ′(τ)∆τ . We let Prec(τ) be the probability
density function (pdf) for recovery: Prec(τ) = −P ′(τ) ≥ 0.

2.1. The equations
We have full derivations of the equations in appendix A. If pk(t) is the prob-

ability that k individuals are infected at time t, then the probability generating
function (pgf) f(x, t) =

∑∞
k=0 pk(t)xk provides a useful tool to help calculate

pk. We get

f(x, t) = xP (t)g(x, t|t) +
∫ t

0

g(x, t|τ)Prec(τ) dτ (4)

Here g(x, t|τ) =
∑
qk(t|τ)xk is the pgf for the number of descendants an indi-

vidual has t units of time after its infection given that it recovers τ ≤ t units of
time after infection. That is qk(t|τ) is the probability an individual has k infec-
tious descendants t units of time after becoming infected given that it recovers
after τ ≤ t units of time.

We find (for τ ≤ t)

g(x, t|τ) = exp
(∫ τ

0

[f(x, t− θ)− 1]β(θ) dθ
)

(5)

To find equations for pk(t) we take the k-th derivative of f , divide by k!, and
evaluate at x = 0. We solve the equations as described in appendix B.

We compare the solutions with 50 000 simulations in figure 2. We take
the pdf of the infection duration to be a Weibull distribution, W (5.8, 2.59), so
P (τ) = e−(τ/5.8)2.59

. We take constant β = 2. Although there is considerable
noise in simulations, we find close match with analytic results.

2.2. Asymptotic behavior at large I
If S(0) is large, then N/S may still be approximately constant even as I

becomes much larger than 1. We are interested in the behavior of I as it becomes
large, but before N/S has changed significantly. If we assume N/S = 1 remains
fixed, then under weak assumptions it can be shown [? 6, 7] that I(t) either
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becomes zero at some finite time or it converges to Ceφt where C is a random
number determined by stochastic effects and φ solves

1 =
∫ ∞

0

e−φτβ(τ)P (τ) dτ

This equation is the Euler-Lotka (EL) equation, which we derive in §3. The so-
lution φ is unique and known as the Malthusian parameter. The most significant
assumption we require for convergence is that the infection is not a “lattice”
process, that is, possible times of infection are not discretized so I can change
continuously 1. This result guarantees that if the susceptible population is suf-
ficiently large, the outbreak either dies out or grows and becomes effectively
deterministic.

We have shown that equations (4) and (5) accurately predict the probability
of having a given number of infections as a function of time. Once the outbreak
is sufficiently large, the impact of stochastic effects is reduced and the infected
population size scales like Ceφt for fixed φ. The random value of C determines
how much time is available to prepare for the epidemic.

2.3. Distribution of epidemic onset times
We use a simpler disease process to investigate the impact of the stochas-

tic phase on how quickly an epidemic “takes off”. We consider a population
with constant infectiousness and exponentially distributed infection durations
(corresponding to a constant recovery rate). We compare predictions from the
stochastic model with predictions from the deterministic equations (1)–(3) which
are exactly valid precisely for this infection process. We take β = 1.5 and γ = 1.

Figure 3 shows that if the initial number of infections is low, it is relatively
likely that the number infected becomes large before the deterministic equations
predict it should. This has a number of implications for interpreting early stages
of an outbreak. If we attempt to predict the present size of an outbreak given a
known introduction date using the assumption of deterministic growth, we are
likely to underpredict the current size. Consequently if we make preparations to
introduce interventions under the assumption of deterministic growth, we may
be using interventions that are too small and implemented too late.

The mismatch decreases as the initial number of infections increase. We
explain this observation by noting that outbreaks with only a few infections
grow on average at the deterministically predicted rate. However, those at the
lower range of growth often go extinct, while those at the higher range tend to
become epidemics quickly. This leads to the important conclusion that if an
epidemic happens, it is likely to happen faster than the deterministic equations
predict.

This may be made more rigorous... fill in

1For lattice processes, similar results apply with discrete rather than continuous time.
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Figure 3: A comparison of the deterministically predicted time at which 1000 individuals
are infected (vertical dashed lines) with the actual probabilities (solid curves) of having 1000
individuals infected at each time given different numbers of initial infections.

3. Deterministic Phase

In this section we develop the deterministic equations governing epidemics
once stochastic effects are unimportant. Our exact equations are equivalent to
many previous age-of-infection models [4, 11, 3, 2, 14, 5, 20], but we avoid the
usual use of PDEs. A related approach also avoiding PDEs was used by [3],
but we cast our equations in a form similar to the standard SIR equations (1)–
(3). We then introduce an approximation to these equations. We discuss the
transition from the stochastic phase to the deterministic phase in §4.

In the stochastic phase analysis, we assumed that infectiousness is indepen-
dent of the recovery time (except that after recovery infectiousness is zero). We
can drop this assumption here and redefine β(τ) as the average rate of infection
τ units of time after infection for those individuals still infected (of which a
fraction S/N are successful). The product β(τ)P (τ) represents the expected
rate of new infections caused by an individual u infected τ units of time pre-
viously, where the expectation is taken without prior knowledge of whether u
has recovered. We normalize this by R0 =

∫∞
0
β(τ)P (τ) dτ to arrive at the

generation interval distribution β(τ)P (τ)/R0 [19, 21].
Let b(t) denote the rate of new infections occurring at time t and d(t) the

rate of recoveries. Let i(t, τ) denote the number of people who became infected
at time t − τ and are still infected at time t. Then i(t, τ) = b(t − τ)P (τ). We
can find b in terms of i by b(t) =

∫∞
0
i(t, τ)(S/N)β(τ) dτ and d in terms of b by

d(t) =
∫∞

0
b(t− τ)Prec(τ) dτ .

If N/S is constant the age-of-infection distribution converges to a steady-
state where i(t, τ)/I(t) is independent of t. The population size grows or decays
exponentially, so b(t) = Cetφ where φ solves the modified EL equation

Cetφ =
∫ ∞

0

Ce(t−τ)φ S

N
β(τ)P (τ) dτ

⇒ N

S
=
∫ ∞

0

e−τφβ(τ)P (τ) dτ

This has been used at early times [21] when N/S ≈ 1 to relate the exponential
growth in time φ with R0.
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We use the constant N/S solution as the basis for our approach with chang-
ing N/S. We take b(t) = Ceξ(t)

Ceξ(t) =
∫ ∞

0

Ceξ(t−τ)S(t)
N

β(τ)P (τ) dτ

Rearrangement gives

eξ(t)
N

S(t)
= F [ξ, t] ≡

∫ ∞

0

eξ(t−τ)β(τ)P (τ) dτ

We derive equations for I and S in terms of ξ as follows: The derivative
of S is −b(t) = −Ceξ(t). We multiply by 1 = I/

∫∞
0
i(t, τ) dτ , using i(t, τ) =

b(t− τ)P (τ) = Ceξ(t−τ)P (τ) to get

Ṡ = − Ie
ξ(t)

G[ξ, t]
= −F [ξ, t]

G[ξ, t]
IS

N

where G[ξ, t] =
∫∞

0
eξ(t−τ)P (τ) dτ . Repeating this for İ = b(t)− d(t) we get

İ =
I

G[ξ, t]
− H[ξ, t]
G[ξ, t]

I =
F [ξ, t]
G[ξ, t]

IS

N
− H[ξ, t]
G[ξ, t]

I

where H[ξ, t] =
∫∞

0
eξ(t−τ)Prec(τ) dτ . This can be written in a similar form

to the standard SIR equations, except that the coefficients change in time and
depend on the history of the epidemic

Ṡ = −β̂(t)
IS

N
(6)

İ = β̂(t)
IS

N
− γ̂(t)I (7)

Ṙ = γ̂(t)I (8)

F [ξ, t] =
N

S
eξ(t) (9)

where β̂(t) = F [ξ, t]/G[ξ, t] and γ̂(t) = H[ξ, t]/G[ξ, t]. Because of the similarity
in notation, we distinguish β̂(t) to be the average rate of causing infection of
all individuals infected at time t, while β(τ) is the average rate of causing
infection by an individual still infected τ units of time after becoming infected.
To initialize the problem we need ξ(t) for all t < 0 as well as S(0) and I(0).
Typically we will assume that ξ(t) = −∞ for t < 0 so that eξ(t) = 0. As we solve
forward, new values of ξ are calculated based on the change in S. The history
of ξ(t − τ) for τ > 0 encodes all information needed about the age-of-infection
distribution at t. A less intuitive, but simpler formulation of these equations
appears in appendix C.
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3.1. Approximating the solution
Storing the history of an outbreak introduces some mild analytical and com-

putational difficulties. It is convenient to work with a system that depends only
on its current state. If N/S varies slowly relative to how quickly ξ changes,
we can assume that the system responds adiabatically to changes in N/S and
so the age-of-infection distribution is at equilibrium with the current value of
N/S. This assumption will allow us to create equations analogous to (1)–(3)
with changing coefficients, which may be solved by standard ODE methods.
This approach will break down if N/S changes significantly during a typical
infectious period. Fortunately, we can use the results of the approximation to
identify when the approximation fails.

We replace ξ(t−τ) by ξ(t)−
∫ τ

0
φ(t−θ) dθ where φ(t) = ξ′(t) and approximate

F/eξ, G/eξ, and H/eξ by F (φ), G(φ), and H(φ) respectively assuming that
φ(t− τ) ≈ φ(t) for the range of τ which make a significant contribution to the
integral.

F (φ) =
∫ ∞

0

e−τφ(t)β(τ)P (τ) dτ

G(φ) =
∫ ∞

0

e−τφ(t)P (τ) dτ

H(φ) =
∫ ∞

0

e−τφ(t)Prec(τ) dτ

Note that each of these is a Laplace transform. The resulting approximating
equations are

Ṡ = −β̂0(t)
IS

N
(10)

İ = β̂0(t)
IS

N
− γ̂0(t)I (11)

Ṙ = γ̂0(t)I (12)

F (φ) =
N

S(t)
(13)

where β̂0(t) = F (φ)/G(φ) and γ̂0(t) = H(φ)/G(φ).
Computationally this system of equations is only mildly more difficult than

the standard SIR equations. We can either find the functional forms of the
Laplace transforms, or simply calculate them for various φ in advance. Once
that is done, then at each time step, we need only look at N/S, identify φ such
that F (φ) = N/S, and then find G and H. Then the integration proceeds as in
the standard SIR equations.

The approximation is valid as long as the amount of change of N/S during
a typical infectious period is small, and is therefore valid well into the nonlinear
regime after the exponential growth phase has ended.
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Figure 4: Comparison of simulations with exact age-of-infection model, approximation, and
two parametrizations of the SIR equations. The temporal shift of the exact and approximate
solutions is a result of difference in initial condition. The exact solution takes the initial
condition that ξ(t) = 0 for t < 0 while the approximate solution assumes that ξ(t) = tφ(0) for
t < 0.

3.2. Examples
3.2.1. The usual suspects

If we make the usual assumptions of constant infectiousness and exponen-
tially distributed recovery time [β constant and Prec(τ) = γe−γτ ] the system is
memoryless. The function ξ encodes the age-of-infection distribution, which is
irrelevant in a memoryless system. Thus the equations for I and S should not
depend on ξ. We find F [ξ, t] = βG[ξ, t], and so Ṡ = −βIS/N . We similarly find
H[ξ, t]/G[ξ, t] = γ and so İ = βIS/N − γI. So in this special case the exact
age-of-infection model (6)–(9) reduces to the standard SIR equations (1)–(3).
This holds even for our approximate system (10)–(13).

3.2.2. A piecewise continuous example
We take

β(τ) =

{
c 0 ≤ τ ≤ 1 or 2 ≤ τ ≤ 3
0 otherwise

(14)

Prec(τ) =

{
1/2 1 ≤ τ ≤ 3
0 otherwise

(15)

So people are initially infectious, then stop being infectious at τ = 1 and begin
to recover. At τ = 2, they continue recovering, but become infectious once more.
By τ = 3 all individuals have recovered. Such a system could model a disease in
which individuals are infectious before and possibly after having symptoms, but
self-isolate during the symptomatic phase. The generation interval distribution
is given by

β(τ)P (τ)
R0

=





4/5 0 ≤ τ ≤ 1
2(3−τ)

5 2 ≤ τ ≤ 3
0 otherwise

(16)

In figure 4 we find that the exact model (6)–(9) fits the simulations well
(with the discrepancy due to stochastic shifts in time). The difference in timing
between the exact and approximate solution (10)–(13) is due to differences in
initial conditions: the exact calculation assumes a single infection beginning at
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Figure 5: The standard SIR equations cannot closely capture the dynamics of the disease
spread, regardless of whether we preserve the average duration of infection or the average
generation interval.
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Figure 6: For gamma distributed recovery time with constant infectiousness, the exact system
differs from simulations only in time shifts. The approximation closely matches the initial
growth phase, but begins deviating close to the peak.

t = 0 while the approximate solution assumes that the epidemic begins with
the equilibrium age-distribution already reached by t = 0. The approximate
model is a good fit for the behavior at early times and remains a good ap-
proximation until the change in N/S becomes significant over the duration of
an infection. The approximation performs best in those situations where the
number of infections remains smaller.

If we attempt to approximate the epidemic course using the standard SIR
model (1)–(3), then we have two free parameters β and γ. We can identify
(at least) three constraints: R0, average duration of infection, and average
generation interval. We can only match two of these at a time, which we show
in figure 5. If we choose to match R0 and average duration of infection then the
total number of infected person-days is correct, but the timing is far off. If we
choose to match R0 and average generation interval, then the timing is much
closer, but the peak patient load is significantly underestimated.

3.2.3. Gamma-distributed recovery times
Recently [22] investigated some of the role the distribution of infection dura-

tion has on the dynamics of an epidemic. They considered a gamma-distributed
infectious period with constant infectiousness. The model they studied corre-
sponds to a chain of 100 exponentially distributed infectious classes, each with
infectiousness β and expected duration 1/100. They showed that the standard
SIR equations (1)–(3) provide a poor approximation.

For this system, Prec(τ) = τn−1 exp(−nτ)nn/(n − 1)! where n = 100. The
Laplace transform of this is (1+φ/n)−n. From this we can derive the transforms
of P and βP , which allows us to define the coefficients for our approximation.
Figure 6 shows that the approximation closely follows the early growth even after
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the exponential phase ends. It finally deviates close to the epidemic peak, but
it gives a reasonable estimate of the timing and maximum load of the epidemic.

4. Transition Phase

We have shown that stochastic effects play an important role on whether
an epidemic occurs and the timing of an epidemic if it does occur. We have
also seen that once the epidemic is sufficiently large, it follows the deterministic
predictions. We borrow an approach from [8] to identify when the transition
from the stochastic phase to the deterministic phase occurs. For simplicity in
our analysis, we will assume that the process is not highly peaked. This allows
us to assume that i(t, τ)/I(t) is close to its equilibrium state.

In order to treat the dynamics as deterministic over a time interval ∆t, we
must satisfy two competing conditions. First, we need the time interval to be
large enough that the number of infections and recoveries that happen in that
interval is well-approximated by the expected number. That is, we need the
expected error to be small compared to the expected value, and so the coefficient
of variation (the square root of the variance divided by the expectation) is
small. Assuming that the rates remain constant, the infection and recovery
processes are both Poisson, and so their difference is a Skellam distribution,
which has variance I∆t(β̂ + γ̂) [18, 13]. Consequently the condition we need is

that
√
I∆t(β̂ + γ̂)/I∆t|β̂ − γ̂| � 1. So

∆t� β̂ + γ̂

I(β̂ − γ̂)2
(17)

Second, we need the time interval to be small enough that the rate at which the
infectious population size changes is not affected by changes in the infectious
population. That is we need ∆I ≈ (β − γ)I∆t� I. So

∆t� 1

|β̂ − γ̂|
(18)

For small values of I, conditions (17) and (18) cannot be satisfied simultaneously.
Combining these conditions we need that

I ≫
β̂ + γ̂

|β̂ − γ̂|

More strictly, we actually require that
√
I ≫ (β̂ + γ̂)/|β̂ − γ̂|.

The analysis we have done does not apply close to the peak of the epidemic
(where β̂ = γ̂). Here we can replace condition (17) with the requirement that
the error in the number of new infections is small compared to the number of
new infections and similarly for the number of recoveries. In general we need
condition (18) combined with either this pair of conditions or condition (17) to
guarantee that the deterministic equations apply. For practical purposes, once
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the deterministic equations hold, we expect them to hold through the peak until
I decays at which point we can use (17) again.

If the generation interval distribution were highly peaked around some typ-
ical time, then we could still argue that the system is deterministic, but we
would have to explicitly set the history of ξ rather than assuming it is takes
the equilibrium form. By assuming the equilibrium distribution we can treat
infections as occurring at a slowly changing rate.

5. Discussion

A typical disease outbreak begins small and whether it grows or becomes
extinct is strongly influenced by stochastic effects. If it grows, it generally does
so faster than predicted deterministically because those outbreaks which are
most likely to not die out stochastically are those which initially grow faster
than average. Consequently if we observe an epidemic, it is likely to have grown
to an epidemic faster than deterministic equations predict.

Once an outbreak becomes large, it transitions to a deterministic phase. We
can estimate the size an outbreak must reach to be deterministic by identifying a
time interval which is large enough that many events happen in the interval (and
so the error of a deterministic prediction is small compared to the prediction),
while at the same time the interval is small enough that the size of I and S do
not change significantly. Such a time interval can only exist if I is sufficiently
large.

Once an outbreak is deterministic, we can use the deterministic equations
to accurately model the spread once a correcting time shift is applied. These
equations are somewhat difficult because they require saving the history of an
epidemic, and so it may be more convenient to use approximate models. We have
introduced an approximate model based on standard compartmental models.
We assume that the system responds adiabatically to changes in the susceptible
fraction. It uses a single infectious class, but has coefficients that change in
time. It provides a good estimate of the early behavior, but may deviate close
to the peak. We can estimate when it deviates by looking at how quickly the
susceptible fraction changes during a typical infectious period.

We have assumed throughout that the infectious population can be modeled
in continuous time. If the generation interval is discrete, then these assumptions
fail, but similar approaches work in discrete time. A more complicated situa-
tion arises when the generation interval distribution is close to discrete: If the
distribution is tightly peaked about a mean which is sufficiently far from zero,
then it may take many generations for the infectious population to reach equi-
librium. The dynamics may become deterministic before the age distribution of
the infected population reaches equilibrium, in which case our exact equations
will provide a good model (assuming appropriate initial conditions) while our
first approximation may fail badly. Our second approximation may require a
long chain of infectious classes in order to reproduce the correct dynamics.
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The models we have developed are straightforward to adapt to SIR with
birth or death, SIS, or SIRS. In fact, such situations will be more amenable to
our first approximating method because the rate of change of N/S is reduced.
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A. Probability Generating Functions

A probability generating function (pgf) is a function f(x) which encodes a
probability distribution of non-negative integers [23]. Given that the probability
of k is pk we define the function

f(x) = p0 + p1x
1 + p2x

2 + · · ·

Probability generating functions have a number of useful properties. The prod-
uct of two pgfs is itself a pgf for the sum of two numbers chosen independently
from each distribution. From this fact, it can be shown that for two pgfs f and
g encoding the distributions Pg and Pf respectively, the function f(g(x)) is the
pgf for the distribution found by choosing a random number s from Pf , and
then taking the sum of s independent random numbers from Pg.

This property of function composition is useful in our context to deal with
taking a random number of infecteds (corresponding to Pf ), and each of them
infects a random number of susceptibles (from a distribution Pg). The resulting
number of new infections is given by the composition of the corresponding pgfs.

A.1. derivation of equations
We assume that the population is sufficiently large relative to the number

of infections, that no infections are prevented by depletion of susceptibles. We
focus our attention on a single infected individual u and its descendants. We can
assume that t = 0 when u becomes infected. Let f(x, t) be the time-dependent
pgf for the number of individuals (descended from u, including u) who are
infected at t. That is f(x, t) =

∑∞
n=0 pn(t)xn where pn(t) is the probability

that n individuals are infected at time t.
Let g(x, t|τ) be the pgf for the number of infectious descendants u has t

units of time after becoming infected given that its infection lasts τ units of
time. Note that if τ > t, then g(x, t|τ) = g(x, t|t). Then the number of current
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infections is given by a weighted average of the number of descendants (plus 1
if u is still infectious). Encoding this as a statement for pgfs gives

f(x, t) = xP (t)g(x, t|t) +
∫ t

0

g(x, t|τ)Prec(τ) dτ

The number of infections resulting from an individual v infected at time θ has
pgf f(x, t− θ). This allows us to express g in terms of f .

To find g, we consider an individual who recovers at time τ and divide the
duration of infectiousness into small ∆θ sized blocks. The pgf for the number
of infections at time t due to an infection that occurs in the interval [θ, θ+ ∆θ)
is f(x, t− θ) +O(∆θ). The infection occurs with probability β(θ)∆θ+O(∆θ2).
The probability that infection does not occur during that time period is 1 −
β(θ)∆θ +O(∆θ2). Consequently the pgf for the number of infections at time t
resulting from infections in the time interval of interest is:

1− [1− f(x, t− θ)]β(θ)∆θ +O(∆θ2)

The pgf for the number of infections occurring in any of the time intervals is the
product of the individual generating functions. Consequently, taking ∆θ → 0,
the pgf for the number of descendants an individual has at time t given that it
recovers at τ ≤ t is

g(x, t|τ) = lim
∆θ→0

τ/∆θ∏

i=0

(
1− [1− f(x, t− i∆θ)]β(i∆θ)∆θ +O(∆θ2)

)

= lim
∆θ→0

exp



τ/∆θ∑

i=0

ln
(
1 + [f(x, t− i∆θ)− 1]β(i∆θ)∆θ +O(∆θ2)

)



= lim
∆θ→0

exp



τ/∆θ∑

i=0

[f(x, t− i∆θ)− 1]β(i∆θ)∆θ +O(∆θ2)




= exp
(∫ τ

0

[f(x, t− θ)− 1]β(θ) dθ
)

If the individual recovers at time τ > t, then the pgf for the number of descen-
dants at time t including itself satisfies g(x, t|τ) = xg(x, t|t).

This expression for g can be derived alternately by considering a large pop-
ulation size N and noting that if the expected number of infections caused
by v is r =

∫ τ
0
β(θ) dθ, then the probability of infecting each individual is

p =
∫ τ

0
β(θ)/N dθ The probability of infecting n people is then

(
N
n

)
pn(1−p)N−n.

From this we can derive the pgf for the number of infections caused directly from
v, and then using function composition will arrive at the same expression.

B. Notes on the numerics for the stochastic problem

We take f(x, t) =
∑
pk(t)xk and g(x, t|τ) =

∑
qk(t|τ)xk where pk gives the

probability of having k people infected at time t, while qk gives the probability
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of having k descendants given that recovery occurs at time τ . If we take k
derivatives of these equations, divide by k! and evaluate at x = 0, we get the
probability of k infections. The resulting system of equations is straightforward
to solve numerically. As our initial condition at t = 0 we generally set all
derivatives of f to be 0 except the first derivative, which is 1, though other
options are possible.

If we make a simplifying assumption that β is constant, we can find an
expression for g which reduces the dimensionality of the problem. We have
∫ τ

0

[f(x, t− θ)− 1]β dθ = β

[
−τ +

∫ t

0

f(x, t− θ) dθ −
∫ t

τ

f(x, t− θ) dθ
]

= −βτ + β[
∫ t

0

f(x, θ) dθ −
∫ t−τ

0

f(x, θ) dθ]

We define the auxiliary function ζ(x, s) =
∫ s

0
f(x, θ) dθ. Then

g(x, t|τ) = expβ[ζ(x, t)− ζ(x, t− τ)− τ ]

Our equation for f remains

f(x, t) = xP (t)g(x, t|t) +
∫ t

0

g(x, t|τ)Prec(τ) dτ

This allows us to simplify the calculations by storing ζ at each value of s rather
than needing to integrate f at each time step.

In practice we want to find arbitrary derivatives of f evaluated at x = 0. To
find this numerically, we differentiate these equations with respect to x to arrive
at equations coupling derivatives of f(x, t) with derivatives of ζ at x = 0. Let
us assume we know ζ(0, s) and its derivatives for s = 0, dt, 2dt, ..., t and f(0, t)
and its derivatives. To find ζ(0, t+ dt) and f(0, t+ dt), it is straightforward to
use an implicit numerical method.

C. An equivalent formulation

Although equations (6)–(9) are intuitively appealing because of their simi-
larity to the standard SIR equations, we can reduce them to a simpler form.
We first replace eξ(t) with ψ(t). Note that Ṡ = −b(t) = −Cψ(t). Further
G = I(t)/C, so from the initial condition at t = 0, we can calculate C, and have
no further need for g. Thus we arrive at

Ṡ = −Cψ(t) (19)

İ = Cψ(t)− C
∫ ∞

0

ψ(t− τ)Prec(τ) dτ (20)

Ṙ = C

∫ ∞

0

ψ(t− τ)Prec(τ) dτ (21)

F [ψ, t] =
N

S
ψ(t) (22)
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If we take as the initial condition that all infections at time t = 0 begin their
infection period at t = 0, then ψ(t−τ) = 0 for τ > t and we can assume that the
integrals have their upper limit at τ = t. If we take some other initial condition,
we may have to include the entire range of τ . Although these equations are
simpler to solve, they lose some of their intuitive appeal because it is more
difficult to identify the meaning of each term.
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